Extensions 1→N→G→Q→1 with N=C6xC3:S3 and Q=C22

Direct product G=NxQ with N=C6xC3:S3 and Q=C22
dρLabelID
C3:S3xC22xC6144C3:S3xC2^2xC6432,773

Semidirect products G=N:Q with N=C6xC3:S3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C6xC3:S3):1C22 = S3xD6:S3φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3):1C2^2432,597
(C6xC3:S3):2C22 = S3xC3:D12φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3):2C2^2432,598
(C6xC3:S3):3C22 = D6:S32φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3):3C2^2432,600
(C6xC3:S3):4C22 = (S3xC6):D6φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3):4C2^2432,601
(C6xC3:S3):5C22 = C3:S3:4D12φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3):5C2^2432,602
(C6xC3:S3):6C22 = C3xS3xD12φ: C22/C1C22 ⊆ Out C6xC3:S3484(C6xC3:S3):6C2^2432,649
(C6xC3:S3):7C22 = C3xS3xC3:D4φ: C22/C1C22 ⊆ Out C6xC3:S3244(C6xC3:S3):7C2^2432,658
(C6xC3:S3):8C22 = S3xC12:S3φ: C22/C1C22 ⊆ Out C6xC3:S372(C6xC3:S3):8C2^2432,671
(C6xC3:S3):9C22 = C12:S32φ: C22/C1C22 ⊆ Out C6xC3:S372(C6xC3:S3):9C2^2432,673
(C6xC3:S3):10C22 = S3xC32:7D4φ: C22/C1C22 ⊆ Out C6xC3:S372(C6xC3:S3):10C2^2432,684
(C6xC3:S3):11C22 = C62:23D6φ: C22/C1C22 ⊆ Out C6xC3:S336(C6xC3:S3):11C2^2432,686
(C6xC3:S3):12C22 = C12:3S32φ: C22/C1C22 ⊆ Out C6xC3:S3484(C6xC3:S3):12C2^2432,691
(C6xC3:S3):13C22 = C2xS33φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3):13C2^2432,759
(C6xC3:S3):14C22 = C6xC3:D12φ: C22/C2C2 ⊆ Out C6xC3:S348(C6xC3:S3):14C2^2432,656
(C6xC3:S3):15C22 = C3xDic3:D6φ: C22/C2C2 ⊆ Out C6xC3:S3244(C6xC3:S3):15C2^2432,659
(C6xC3:S3):16C22 = C2xC33:6D4φ: C22/C2C2 ⊆ Out C6xC3:S3144(C6xC3:S3):16C2^2432,680
(C6xC3:S3):17C22 = C2xC33:8D4φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3):17C2^2432,682
(C6xC3:S3):18C22 = C3:S3xC3:D4φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3):18C2^2432,685
(C6xC3:S3):19C22 = C2xC33:9D4φ: C22/C2C2 ⊆ Out C6xC3:S348(C6xC3:S3):19C2^2432,694
(C6xC3:S3):20C22 = C62:24D6φ: C22/C2C2 ⊆ Out C6xC3:S3244(C6xC3:S3):20C2^2432,696
(C6xC3:S3):21C22 = C6xC12:S3φ: C22/C2C2 ⊆ Out C6xC3:S3144(C6xC3:S3):21C2^2432,712
(C6xC3:S3):22C22 = C3xD4xC3:S3φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3):22C2^2432,714
(C6xC3:S3):23C22 = C6xC32:7D4φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3):23C2^2432,719
(C6xC3:S3):24C22 = S32xC2xC6φ: C22/C2C2 ⊆ Out C6xC3:S348(C6xC3:S3):24C2^2432,767
(C6xC3:S3):25C22 = C22xS3xC3:S3φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3):25C2^2432,768
(C6xC3:S3):26C22 = C22xC32:4D6φ: C22/C2C2 ⊆ Out C6xC3:S348(C6xC3:S3):26C2^2432,769

Non-split extensions G=N.Q with N=C6xC3:S3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C6xC3:S3).1C22 = Dic3xC32:C4φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).1C2^2432,567
(C6xC3:S3).2C22 = D6:(C32:C4)φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3).2C2^2432,568
(C6xC3:S3).3C22 = C33:(C4:C4)φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).3C2^2432,569
(C6xC3:S3).4C22 = C3xS32:C4φ: C22/C1C22 ⊆ Out C6xC3:S3244(C6xC3:S3).4C2^2432,574
(C6xC3:S3).5C22 = C3xC3:S3.Q8φ: C22/C1C22 ⊆ Out C6xC3:S3484(C6xC3:S3).5C2^2432,575
(C6xC3:S3).6C22 = C3:S3.2D12φ: C22/C1C22 ⊆ Out C6xC3:S3244(C6xC3:S3).6C2^2432,579
(C6xC3:S3).7C22 = S32:Dic3φ: C22/C1C22 ⊆ Out C6xC3:S3244(C6xC3:S3).7C2^2432,580
(C6xC3:S3).8C22 = C33:C4:C4φ: C22/C1C22 ⊆ Out C6xC3:S3484(C6xC3:S3).8C2^2432,581
(C6xC3:S3).9C22 = (C3xC6).8D12φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3).9C2^2432,586
(C6xC3:S3).10C22 = (C3xC6).9D12φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).10C2^2432,587
(C6xC3:S3).11C22 = C3xC2.PSU3(F2)φ: C22/C1C22 ⊆ Out C6xC3:S3488(C6xC3:S3).11C2^2432,591
(C6xC3:S3).12C22 = C6.PSU3(F2)φ: C22/C1C22 ⊆ Out C6xC3:S3488(C6xC3:S3).12C2^2432,592
(C6xC3:S3).13C22 = C6.2PSU3(F2)φ: C22/C1C22 ⊆ Out C6xC3:S3488(C6xC3:S3).13C2^2432,593
(C6xC3:S3).14C22 = S32xDic3φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).14C2^2432,594
(C6xC3:S3).15C22 = S3xC6.D6φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3).15C2^2432,595
(C6xC3:S3).16C22 = Dic3:6S32φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).16C2^2432,596
(C6xC3:S3).17C22 = D6:4S32φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3).17C2^2432,599
(C6xC3:S3).18C22 = C33:5(C2xQ8)φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).18C2^2432,604
(C6xC3:S3).19C22 = D6.S32φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).19C2^2432,607
(C6xC3:S3).20C22 = D6.4S32φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).20C2^2432,608
(C6xC3:S3).21C22 = D6.3S32φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3).21C2^2432,609
(C6xC3:S3).22C22 = D6.6S32φ: C22/C1C22 ⊆ Out C6xC3:S3488-(C6xC3:S3).22C2^2432,611
(C6xC3:S3).23C22 = Dic3.S32φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3).23C2^2432,612
(C6xC3:S3).24C22 = C3xD6.6D6φ: C22/C1C22 ⊆ Out C6xC3:S3484(C6xC3:S3).24C2^2432,647
(C6xC3:S3).25C22 = C3xD6.3D6φ: C22/C1C22 ⊆ Out C6xC3:S3244(C6xC3:S3).25C2^2432,652
(C6xC3:S3).26C22 = C12.39S32φ: C22/C1C22 ⊆ Out C6xC3:S372(C6xC3:S3).26C2^2432,664
(C6xC3:S3).27C22 = C12.57S32φ: C22/C1C22 ⊆ Out C6xC3:S3144(C6xC3:S3).27C2^2432,668
(C6xC3:S3).28C22 = C62.91D6φ: C22/C1C22 ⊆ Out C6xC3:S372(C6xC3:S3).28C2^2432,676
(C6xC3:S3).29C22 = C62.93D6φ: C22/C1C22 ⊆ Out C6xC3:S372(C6xC3:S3).29C2^2432,678
(C6xC3:S3).30C22 = C12:S3:12S3φ: C22/C1C22 ⊆ Out C6xC3:S3484(C6xC3:S3).30C2^2432,688
(C6xC3:S3).31C22 = C62.96D6φ: C22/C1C22 ⊆ Out C6xC3:S3244(C6xC3:S3).31C2^2432,693
(C6xC3:S3).32C22 = C2xS3xC32:C4φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3).32C2^2432,753
(C6xC3:S3).33C22 = C6xS3wrC2φ: C22/C1C22 ⊆ Out C6xC3:S3244(C6xC3:S3).33C2^2432,754
(C6xC3:S3).34C22 = C2xC33:D4φ: C22/C1C22 ⊆ Out C6xC3:S3244(C6xC3:S3).34C2^2432,755
(C6xC3:S3).35C22 = C2xC32:2D12φ: C22/C1C22 ⊆ Out C6xC3:S3248+(C6xC3:S3).35C2^2432,756
(C6xC3:S3).36C22 = C6xPSU3(F2)φ: C22/C1C22 ⊆ Out C6xC3:S3488(C6xC3:S3).36C2^2432,757
(C6xC3:S3).37C22 = C2xC33:Q8φ: C22/C1C22 ⊆ Out C6xC3:S3488(C6xC3:S3).37C2^2432,758
(C6xC3:S3).38C22 = C12xC32:C4φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).38C2^2432,630
(C6xC3:S3).39C22 = C3xC4:(C32:C4)φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).39C2^2432,631
(C6xC3:S3).40C22 = C3xC62:C4φ: C22/C2C2 ⊆ Out C6xC3:S3244(C6xC3:S3).40C2^2432,634
(C6xC3:S3).41C22 = C4xC33:C4φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).41C2^2432,637
(C6xC3:S3).42C22 = C33:9(C4:C4)φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).42C2^2432,638
(C6xC3:S3).43C22 = C62:11Dic3φ: C22/C2C2 ⊆ Out C6xC3:S3244(C6xC3:S3).43C2^2432,641
(C6xC3:S3).44C22 = C3xD12:S3φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).44C2^2432,644
(C6xC3:S3).45C22 = C3xDic3.D6φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).45C2^2432,645
(C6xC3:S3).46C22 = C3xD6.D6φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).46C2^2432,646
(C6xC3:S3).47C22 = S32xC12φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).47C2^2432,648
(C6xC3:S3).48C22 = C3xD6:D6φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).48C2^2432,650
(C6xC3:S3).49C22 = C6xC6.D6φ: C22/C2C2 ⊆ Out C6xC3:S348(C6xC3:S3).49C2^2432,654
(C6xC3:S3).50C22 = (C3xD12):S3φ: C22/C2C2 ⊆ Out C6xC3:S3144(C6xC3:S3).50C2^2432,661
(C6xC3:S3).51C22 = C3:S3xDic6φ: C22/C2C2 ⊆ Out C6xC3:S3144(C6xC3:S3).51C2^2432,663
(C6xC3:S3).52C22 = C12.40S32φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3).52C2^2432,665
(C6xC3:S3).53C22 = C12.73S32φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3).53C2^2432,667
(C6xC3:S3).54C22 = C4xS3xC3:S3φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3).54C2^2432,670
(C6xC3:S3).55C22 = C3:S3xD12φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3).55C2^2432,672
(C6xC3:S3).56C22 = C2xDic3xC3:S3φ: C22/C2C2 ⊆ Out C6xC3:S3144(C6xC3:S3).56C2^2432,677
(C6xC3:S3).57C22 = C3:S3:4Dic6φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).57C2^2432,687
(C6xC3:S3).58C22 = C12.95S32φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).58C2^2432,689
(C6xC3:S3).59C22 = C4xC32:4D6φ: C22/C2C2 ⊆ Out C6xC3:S3484(C6xC3:S3).59C2^2432,690
(C6xC3:S3).60C22 = C2xC33:9(C2xC4)φ: C22/C2C2 ⊆ Out C6xC3:S348(C6xC3:S3).60C2^2432,692
(C6xC3:S3).61C22 = C3xC12.59D6φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3).61C2^2432,713
(C6xC3:S3).62C22 = C3xC12.D6φ: C22/C2C2 ⊆ Out C6xC3:S372(C6xC3:S3).62C2^2432,715
(C6xC3:S3).63C22 = C3xC12.26D6φ: C22/C2C2 ⊆ Out C6xC3:S3144(C6xC3:S3).63C2^2432,717
(C6xC3:S3).64C22 = C2xC6xC32:C4φ: C22/C2C2 ⊆ Out C6xC3:S348(C6xC3:S3).64C2^2432,765
(C6xC3:S3).65C22 = C22xC33:C4φ: C22/C2C2 ⊆ Out C6xC3:S348(C6xC3:S3).65C2^2432,766
(C6xC3:S3).66C22 = C3:S3xC2xC12φ: trivial image144(C6xC3:S3).66C2^2432,711
(C6xC3:S3).67C22 = C3xQ8xC3:S3φ: trivial image144(C6xC3:S3).67C2^2432,716

׿
x
:
Z
F
o
wr
Q
<