extension | φ:Q→Out N | d | ρ | Label | ID |
(C6xC3:S3).1C22 = Dic3xC32:C4 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).1C2^2 | 432,567 |
(C6xC3:S3).2C22 = D6:(C32:C4) | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 8+ | (C6xC3:S3).2C2^2 | 432,568 |
(C6xC3:S3).3C22 = C33:(C4:C4) | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).3C2^2 | 432,569 |
(C6xC3:S3).4C22 = C3xS32:C4 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).4C2^2 | 432,574 |
(C6xC3:S3).5C22 = C3xC3:S3.Q8 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).5C2^2 | 432,575 |
(C6xC3:S3).6C22 = C3:S3.2D12 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).6C2^2 | 432,579 |
(C6xC3:S3).7C22 = S32:Dic3 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).7C2^2 | 432,580 |
(C6xC3:S3).8C22 = C33:C4:C4 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).8C2^2 | 432,581 |
(C6xC3:S3).9C22 = (C3xC6).8D12 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 8+ | (C6xC3:S3).9C2^2 | 432,586 |
(C6xC3:S3).10C22 = (C3xC6).9D12 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).10C2^2 | 432,587 |
(C6xC3:S3).11C22 = C3xC2.PSU3(F2) | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8 | (C6xC3:S3).11C2^2 | 432,591 |
(C6xC3:S3).12C22 = C6.PSU3(F2) | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8 | (C6xC3:S3).12C2^2 | 432,592 |
(C6xC3:S3).13C22 = C6.2PSU3(F2) | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8 | (C6xC3:S3).13C2^2 | 432,593 |
(C6xC3:S3).14C22 = S32xDic3 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).14C2^2 | 432,594 |
(C6xC3:S3).15C22 = S3xC6.D6 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 8+ | (C6xC3:S3).15C2^2 | 432,595 |
(C6xC3:S3).16C22 = Dic3:6S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).16C2^2 | 432,596 |
(C6xC3:S3).17C22 = D6:4S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 8+ | (C6xC3:S3).17C2^2 | 432,599 |
(C6xC3:S3).18C22 = C33:5(C2xQ8) | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).18C2^2 | 432,604 |
(C6xC3:S3).19C22 = D6.S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).19C2^2 | 432,607 |
(C6xC3:S3).20C22 = D6.4S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).20C2^2 | 432,608 |
(C6xC3:S3).21C22 = D6.3S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 8+ | (C6xC3:S3).21C2^2 | 432,609 |
(C6xC3:S3).22C22 = D6.6S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8- | (C6xC3:S3).22C2^2 | 432,611 |
(C6xC3:S3).23C22 = Dic3.S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 8+ | (C6xC3:S3).23C2^2 | 432,612 |
(C6xC3:S3).24C22 = C3xD6.6D6 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).24C2^2 | 432,647 |
(C6xC3:S3).25C22 = C3xD6.3D6 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).25C2^2 | 432,652 |
(C6xC3:S3).26C22 = C12.39S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).26C2^2 | 432,664 |
(C6xC3:S3).27C22 = C12.57S32 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 144 | | (C6xC3:S3).27C2^2 | 432,668 |
(C6xC3:S3).28C22 = C62.91D6 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).28C2^2 | 432,676 |
(C6xC3:S3).29C22 = C62.93D6 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).29C2^2 | 432,678 |
(C6xC3:S3).30C22 = C12:S3:12S3 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).30C2^2 | 432,688 |
(C6xC3:S3).31C22 = C62.96D6 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).31C2^2 | 432,693 |
(C6xC3:S3).32C22 = C2xS3xC32:C4 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 8+ | (C6xC3:S3).32C2^2 | 432,753 |
(C6xC3:S3).33C22 = C6xS3wrC2 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).33C2^2 | 432,754 |
(C6xC3:S3).34C22 = C2xC33:D4 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).34C2^2 | 432,755 |
(C6xC3:S3).35C22 = C2xC32:2D12 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 24 | 8+ | (C6xC3:S3).35C2^2 | 432,756 |
(C6xC3:S3).36C22 = C6xPSU3(F2) | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8 | (C6xC3:S3).36C2^2 | 432,757 |
(C6xC3:S3).37C22 = C2xC33:Q8 | φ: C22/C1 → C22 ⊆ Out C6xC3:S3 | 48 | 8 | (C6xC3:S3).37C2^2 | 432,758 |
(C6xC3:S3).38C22 = C12xC32:C4 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).38C2^2 | 432,630 |
(C6xC3:S3).39C22 = C3xC4:(C32:C4) | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).39C2^2 | 432,631 |
(C6xC3:S3).40C22 = C3xC62:C4 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).40C2^2 | 432,634 |
(C6xC3:S3).41C22 = C4xC33:C4 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).41C2^2 | 432,637 |
(C6xC3:S3).42C22 = C33:9(C4:C4) | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).42C2^2 | 432,638 |
(C6xC3:S3).43C22 = C62:11Dic3 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 24 | 4 | (C6xC3:S3).43C2^2 | 432,641 |
(C6xC3:S3).44C22 = C3xD12:S3 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).44C2^2 | 432,644 |
(C6xC3:S3).45C22 = C3xDic3.D6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).45C2^2 | 432,645 |
(C6xC3:S3).46C22 = C3xD6.D6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).46C2^2 | 432,646 |
(C6xC3:S3).47C22 = S32xC12 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).47C2^2 | 432,648 |
(C6xC3:S3).48C22 = C3xD6:D6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).48C2^2 | 432,650 |
(C6xC3:S3).49C22 = C6xC6.D6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | | (C6xC3:S3).49C2^2 | 432,654 |
(C6xC3:S3).50C22 = (C3xD12):S3 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 144 | | (C6xC3:S3).50C2^2 | 432,661 |
(C6xC3:S3).51C22 = C3:S3xDic6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 144 | | (C6xC3:S3).51C2^2 | 432,663 |
(C6xC3:S3).52C22 = C12.40S32 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).52C2^2 | 432,665 |
(C6xC3:S3).53C22 = C12.73S32 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).53C2^2 | 432,667 |
(C6xC3:S3).54C22 = C4xS3xC3:S3 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).54C2^2 | 432,670 |
(C6xC3:S3).55C22 = C3:S3xD12 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).55C2^2 | 432,672 |
(C6xC3:S3).56C22 = C2xDic3xC3:S3 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 144 | | (C6xC3:S3).56C2^2 | 432,677 |
(C6xC3:S3).57C22 = C3:S3:4Dic6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).57C2^2 | 432,687 |
(C6xC3:S3).58C22 = C12.95S32 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).58C2^2 | 432,689 |
(C6xC3:S3).59C22 = C4xC32:4D6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | 4 | (C6xC3:S3).59C2^2 | 432,690 |
(C6xC3:S3).60C22 = C2xC33:9(C2xC4) | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | | (C6xC3:S3).60C2^2 | 432,692 |
(C6xC3:S3).61C22 = C3xC12.59D6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).61C2^2 | 432,713 |
(C6xC3:S3).62C22 = C3xC12.D6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 72 | | (C6xC3:S3).62C2^2 | 432,715 |
(C6xC3:S3).63C22 = C3xC12.26D6 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 144 | | (C6xC3:S3).63C2^2 | 432,717 |
(C6xC3:S3).64C22 = C2xC6xC32:C4 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | | (C6xC3:S3).64C2^2 | 432,765 |
(C6xC3:S3).65C22 = C22xC33:C4 | φ: C22/C2 → C2 ⊆ Out C6xC3:S3 | 48 | | (C6xC3:S3).65C2^2 | 432,766 |
(C6xC3:S3).66C22 = C3:S3xC2xC12 | φ: trivial image | 144 | | (C6xC3:S3).66C2^2 | 432,711 |
(C6xC3:S3).67C22 = C3xQ8xC3:S3 | φ: trivial image | 144 | | (C6xC3:S3).67C2^2 | 432,716 |